
Making Application Sharing Easy:
Architectural Issues for Collaboration Transparency

Steven L. Rohall
IBM T.J.Watson Research Center

Cambridge, MA, USA
steven_rohall @ us.ibm.com

James “Bo” Begole
Sun Microsystems Laboratories, Europe

Saint Ismier, France
bo.begole @ sun.com

ABSTRACT
For many years, people have wanted to share single-user
applications. The vision has been to replicate instances of a
single-user application throughout the network and transmit input
events from one instance to the others. Although there have been
numerous attempts at building such collaboration-transparent
sharing systems, many issues remain unresolved. The intent of
this workshop is to review the state of the art in application
sharing with the goal of identifying how application architecture
can better support collaboration transparency.

1. MOTIVATION
1.1 Background
Collaborative use of replicated, single-user applications has long
been a dream of CSCW practitioners. If such a system were
available, then the myriad of single-user applications could be
repurposed as collaborative tools. Not only would people be able
to collaborate, they would be able to collaborate with the
applications to which they are accustomed.

Today, despite much research in this area, the choices for
synchronous sharing of applications are limited. A few
applications, such as multi-user games, are developed with
integrated collaborative features. The vast majority of end-user
applications, however, are written as single-user applications.
Users, who may be motivated to add collaborative features to an
application, often lack the resources (e.g., the source code) to
accomplish this task. As a result, users have had to resort to
“screen-scraping” techniques using tools such as IBM Lotus
Sametime [11] and Microsoft NetMeeting [8] to share
applications. These tools track changes to a computer’s screen
buffer and transmit the changes as bitmaps to the other
collaborators. This is both CPU- and network-intensive, limiting
this technique’s utility.

A more flexible technique for collaboration is replicated
application sharing. In replicated application sharing, separate
copies of a single-user application are run on each collaborator’s
computer. Events from one copy (e.g., keystrokes) are broadcast
to the other copies where they are processed as if they had been
generated locally, allowing the distributed applications to stay
synchronized.

On the face of it, this idea is simple. If all of the collaborators
have a copy of the single-user application, then one user can
“drive” all the application replicas. Underlying this idea is the
notion that, if the same sequence of events (e.g., user input) is
sent to replicated instances of the application, then the application
state will be manipulated and modified in the same manner in
each of the application copies and each collaborator will see the

same result. This approach is much more network-efficient than
screen scraping systems, since the bandwidth of the input events
is small compared to the application output which gets displayed
to the user.

There have been numerous attempts to build replicated
application sharing systems [4]. MMConf [3], Dialogo [7], and
the first version of Rapport [1] were shared windowing systems
which captured windowing system input events and transmitted
those events to application replicas. However, all of these
systems ran into synchronization problems where the replicated
applications would be displaying different output.

Crowley, et al. talk about four impediments to maintaining state:
“differences in initial application state, misordered input events,
nondeterministic applications, and latecomers” [3]. Lauwers, et
al. make a point of noting that “the synchronization problem is
tractable when the shared applications are deterministic” [7].
They claim further that an application is deterministic if, starting
from the same initial state, the application will generate the same
sequence of outputs given the same sequence of inputs. In
addition, the application output cannot depend upon the timing
between input events. Ahuja, et al., [1] describe the problem with
applications that utilize local state and say that “the maintenance
of this environmental consistency is not generally possible”.

Begole, et al., [2] call these environmental problems externalities.
More specifically, they define an externality as an input (other
than the user) or an output (other than the display) that is external
to the application itself. Their Flexible JAMM system handled
externalities by exploiting properties of the Java language to
dynamically replace single-user application components with
specially-written multi-user counterparts, substituting direct calls
to the object with remote method invocations on a proxy object.
More recent projects (e.g., [9]) have attempted to simplify the
problems of handling externalities and hooking application events
using techniques such as aspect-oriented programming [6].

1.2 Issues
All of these systems have highlighted a number of difficult issues
with application sharing:

• Collaboration-aware applications versus collaboration-
transparent sharing. Is collaboration transparency
achievable and at what cost? What sorts of applications
are amenable to collaboration-transparent sharing?

• Centralized versus replicated architectures. Centralized
event dispatching keeps application state synchronized
but at the cost of increased latency and poor user
experience. On the other hand, replicated systems have

been plagued with state maintenance problems. Is it
possible for replicated applications to stay synchronized?

• “Hooking” existing applications. What is the “right”
level at which to hook applications: screen buffer,
windowing events, or application events? What are the
various techniques for hooking applications? Is it really
possible to hook high-level application events without
intimate knowledge of the application?

• Latency. What is the effect of latency, introduced by
both network and processing delays, on the user
experience? Can a remote user ever have the same
experience as the user driving the application or should
techniques for informing the user about latency be
adopted? Is it possible to share real-time applications,
such as games, in a collaboration-transparent manner?
How can performance be maximized?

• State maintenance. How are potential conflicts addressed
or resolved (e.g., turn-taking, optimistic evaluation with
undo, operational transformation)?

• Application heterogeneity. Does application sharing
always imply that the same applications are employed at
all sites?

This list represents just some of the issues associated with
application sharing. One of the goals of the workshop will be to
address these issues as well as to enumerate other issues which
are keeping application sharing from being “easy.”

2. GOALS
The primary goal of this workshop is to address the question of
making application sharing easy. Much of the prior research in
this area has been to address shortcomings in the applications
being shared (e.g., they do not expose their events, they mingle
application model state with view state). In short, sharing these
applications is hard because they were written with single-user
use in mind. How would they be different if their architects had
anticipated application sharing? Since it is unlikely that all future
applications will be built to be collaborative, what guidance can
we give future application developers for making their
applications easier to share? To adequately address this question,
we will:

• Discuss architectural issues associated with
collaboration-transparent application sharing (as detailed
above).

• Describe current solutions to these issues as embodied in
research systems.

• Determine what an application architecture that more
readily supports collaboration transparency would look
like.

Another implicit goal of the workshop is to foster this community
and look for ways to coordinate future research and development
efforts.

3. ACTIVITIES
The workshop will be run over a full day, with the majority of
time spent on discussion and brainstorming. The day will be
structured as follows:

• Introductions and presentations. The participants will
introduce themselves, list their interests, and present their
position on application sharing. Position presentations
will be grouped so that similar issues are presented at one
time.

• Discussion on architecture. Once a number of issues
have been presented and discussed, the workshop will
focus on making application sharing easy. What things
work well in an application sharing system? How should
future applications be architected to better support
application sharing?

• Future directions. How should the workshop participants
follow up on the day’s discussions?

4. ORGANIZATION
4.1 Participation
We seek to invite a maximum of 15-20 participants on the basis of
position papers submitted prior to the workshop.

4.2 Submissions
Interested participants will need to submit position papers before
September 1st. Each position paper should be no more than 4
pages in standard ACM CSCW formatting. Position papers must
include the following sections:

1. Title, names, affiliations, and email addresses of the
authors.

2. Description of recent or current work in collaboration-
transparent application sharing. The section should
describe the issue or problem as well as the architectural
solution to the issue.

3. Suggestion(s) for architectural changes in applications
which would make sharing easier

4. Short biography of the authors’ backgrounds, areas of
expertise, and motivation for participating in the
workshop

Submissions must be in PDF format, and emailed to steven_rohall
@ us.ibm.com. Submissions must include the name, contact, and
full address of the author.
Copies of the accepted position papers will be distributed to all
participants prior to the workshop.

4.3 Selection Process
The organizers will review all submissions and select participants.
Depending upon the number of submissions, participation in the
workshop might be limited for submissions with multiple authors.
To the extent possible, submissions will be selected so as to
present a range of issues and solutions. All participants are
required to register to attend CSCW 2004.

4.4 Timeline
• After June 14: Call for position papers.

• September 1: Deadline for position papers

• September 1-29: Review position papers

• September 30: Notification of acceptance

• October: Preparation for workshop
The workshop preparations include preparing the informal
proceedings with all of the papers, emailing out the agenda and
structure of workshop presentations and discussions, and any
additional logistics. If possible, a wiki will be created to allow
download of position papers and discussion both before and after
the workshop.

4.5 A/V REQUIREMENTS
The organizers will bring own LCD projector; screen to be
provided by conference.

4.6 ORGANIZERS
Steven L. Rohall
Collaborative User Experience Group, IBM T.J.Watson Research
Center, Cambridge, MA, steven_rohall @ us.ibm.com
Steven Rohall is a software architect at IBM Research. He is
currently working on the Zipper [9] system for replicated
application sharing. Prior experience in synchronous groupware
includes the VIEP [10] system while at TASC and the
Rendezvous [5] system while at Bellcore (now Telcordia
Technologies). Other research interests include information
visualization and electronic mail.

James “Bo” Begole
Sun Microsystems Laboratories, Europe, Saint Ismier, France,
bo.begole @ sun.com
Bo is a staff scientist in Sun’s Network Communities group,
where he focuses on distributed collaboration. Prior to joining
Sun, Bo developed the Flexible JAMM [2] system for supporting
collaboration transparency.

5. REFERENCES
[1] Ahuja, S.R., J.R. Ensor, and D.N. Horn, “The Rapport

Multimedia Conferencing System,” ACM SIGOIS Bulletin,
9(2-3) April/July 1988, pp. 1-8.

[2] Begole, J., R.B. Smith, C.A. Struble, and C.A. Shaffer,
“Resource Sharing for Replicated Synchronous Groupware,”
IEEE/ACM Transactions on Networking, 9(6) December
2001, pp. 833-843.

[3] Crowley, T., P. Milazzo, E. Baker, H. Forsdick, and R.
Tomlinson, “MMConf: an infrastructure for building shared
multimedia applications,” Proceedings of CSCW'90, Los
Angeles, CA, pp. 329-342.

[4] Greenberg, S., “Sharing views and interactions with single-
user applications,” ACM SIGOIS Bulletin, 11(2-3) April/July
1990, pp. 227-237.

[5] Hill, R.D., T. Brinck, J.F. Patterson, S.L. Rohall, and W.
Wilner, “The Rendezvous Language and Architecture for
Constructing Multi-User Applications,” ACM Transactions
on Computer-Human Interaction, 1(2), June 1994, pp. 81-
125.

[6] Kiczales, G., et al., “Aspect-Oriented Programming,”
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 97), Jyväskylä, Finland, pp. 220-
242.

[7] Lauwers, J.C., T.A. Joseph, K.A. Lantz, A.L. Romanow,
“Replicated architectures for shared window systems: a
critique,” ACM SIGOIS Bulletin, 11(2-3) April/July 1990,
pp. 249-260.

[8] NetMeeting: http://www.microsoft.com/netmeeting.
[9] Rohall, S.L. and J.F. Patterson, “Another Look at Replicated

Application Sharing,” Note submitted to CSCW 2004.
[10] Rohall, S.L. and E.P. Lahtinen, “The VIEP System:

Interacting with Collaborative Multimedia,” Proceedings of
UIST'96, Seattle, WA, pp. 59-66.

[11] Sametime: http://www.lotus.com/sametime.

